ERRATA: 'LOCALLY POTENTIALLY EQUIVALENT GALOIS REPRESENTATIONS'

VIJAY M. PATANKAR AND C. S. RAJAN

1.

It was pointed out by J.-P. Serre that the proof of Theorem 2.1 given in [2] is erroneous. The error in the argument occurs in line 17, page 84, where it is asserted that under the map $x \mapsto x^{m}$ of an algebraic group G, a connected component G^{ϕ} maps onto a connected component. This is not true, as can be seen by considering G to be the normalizer of a maximal torus in $S L(2)$ and $m=2$.

Theorem 1.1 [1] partially salvages this by proving a version of Theorem 2.1 of [2] for $n=2$. In [1], a proof of Theorem 2.1 is given under the additional assumptions that $n=2$, and the algebraic monodromy group of one of the Galois representations is $G L(2)$. From this it follows that Theorem 1.1 of [2] holds true.

Remark 2.6 following the proof of Theorem 2.1 holds true as it does not use the above argument.

The proof of [2, Theorem 3.1] was given as a consequence of Theorem 2.1. In [1], we give essentially the same proof and show how to avoid using Theorem 2.1.

Theorem 4.1 of [2] also cannot be claimed to be true, as its proof rests on the validity of Theorem 2.1.

Acknowledgements: The authors thank Professor J.-P. Serre for pointing out the above error in the proof of Theorem 2.1.

References

[1] Manisha Kulkarni, Vijay M. Patankar, C. S. Rajan, Locally potentially equivalent two dimensional Galois representations and Frobenius fields of elliptic curves, preprint (submitted), http://arxiv.org/abs/1403.5635, 15 pages.
[2] Vijay M. Patankar, C. S. Rajan, Locally potentially equivalent Galois representations, J. of Ramanujan Math. Soc., Vol. 27, No. 1, (2012), 77-90.

School of Physical Sciences, Jawaharlal Nehru University, New Delhi, INDIA 110067.

Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay - 400 005, India.

E-mail address: vijaypatankar@gmail.com, rajan@math.tifr.res.in

