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the commutant of the image of the second representation 
remains the same upon restriction to subgroups of finite index 
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1. Introduction

Two n-dimensional linear representations ρ1, ρ2 of a group Γ are said to be potentially 
equivalent if they become isomorphic upon restriction to a subgroup of finite index in Γ. 
In this article, we are interested in proving potential equivalence of �-adic representations 
of the absolute Galois group of a global field, which are locally potentially equivalent at 
a sufficiently large number of places of the global field.

For a field L, denote by GL := Gal(L̄/L) an absolute Galois group of L, where L̄
denote a separable algebraic closure of L. Let K be a global field, i.e., a number field 
or the function field of a curve over a finite field. For a place v of K let Kv denote the 
completion of K at v. Choosing a place w of K̄ lying above v, allows us to identity GKv

with the decomposition subgroup Dw of GK . As w varies this gives a conjugacy class of 
subgroups of GK . Given a representation ρ of GK as above, define the localization (or 
the local component) ρv of ρ at v, to be the representation of GKv

obtained by restricting 
ρ to a decomposition subgroup. This is well defined upto isomorphism.

Let F be a local field of characteristic zero and residue characteristic � relatively prime 
to the characteristic of K. Suppose ρi : GK → GLn(F ), i = 1, 2 are two continuous 
semisimple �-adic representations of GK , unramified outside a finite set Σram of places 
of K containing the archimedean places of K. Let T be a set of places of K. Define ρ1
and ρ2 to be locally potentially equivalent at T , if for each v ∈ T , the restrictions ρ1,v
and ρ2,v to GKv

are potentially equivalent.
Given a continuous representation ρ : GK → GLn(F ) and a place v of K where 

ρ is unramified, let ρ(σv) denote the Frobenius conjugacy class in the image group 
GK/Ker(ρ) � ρ(GK) ⊂ GLn(F ). By an abuse of notation, we will also continue to 
denote by ρ(σv) an element in the associated conjugacy class. Assume further that the 
elements ρ1(σv) and ρ2(σv) are semisimple (by Corollary 2.1, this property is satisfied 
for semisimple representations at a set of places of density one). The representations 
ρ1 and ρ2 are locally potentially equivalent at a prime v not in Σram, precisely when 
the eigenvalues of the Frobenius conjugacy classes ρ1(σv) and ρ2(σv) differ by roots of 
unity.

For a representation ρ : GK → GLn(F ), let Gρ be the algebraic monodromy group 
attached to ρ over F , i.e., the smallest algebraic subgroup Gρ of GLn defined over F
such that ρ(GK) ⊂ Gρ(F ). Denote by Gi the algebraic monodromy groups associated to 
the representations ρi for i = 1, 2.

In [Ra], it is proved that if the representations ρ1 and ρ2 are locally equivalent (in 
fact, enough to assume only that the character values agree evaluated on the Frobenius 
element) at a set of unramified places having positive upper density and the algebraic 
monodromy group of one of the representations is connected, then ρ1 and ρ2 are poten-
tially equivalent. We recall the upper density of a set S of finite places of K is defined 
as:

ud(S) := lim sup#{v ∈ S| Nv ≤ x}/π(x),

x→∞
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where π(x) is the number of finite places v of K with Nv ≤ x. Here Nv denotes the 
cardinality of the residue field kv of Kv.

Based on this result, we consider the following generalization: assume that the alge-
braic monodromy group of either ρ1 or ρ2 is connected and the set of places v of K where 
the localizations ρ1,v and ρ2,v are potentially equivalent has positive upper density. Then 
are ρ1 and ρ2 (globally) potentially equivalent?

One of the motivations to consider this question is to understand the distribution of 
Frobenius fields of elliptic curves. Let A be an abelian variety defined over a number 
field K. The Galois group GK acts in a natural manner on A(K̄). For a rational prime �, 
the Tate module T�(A) := lim←−−n

A[�n] is the GK-module obtained as a projective limit of 
the GK-modules A[�n] of �n-torsion points of A over K̄. Let V�(A) = T�(A) ⊗Zl

Ql. The 
Tate module is of rank 2d over the ring of �-adic integers Z�, where d is the dimension 
of A.

When A is an elliptic curve defined over K, we have a continuous �-adic representation 
ρA,� : GK → GL2(Q�). In [KPR], the above question is answered in the affirmative for 
the representations of GK acting on the Tate module of non-CM elliptic curves. At an 
unramified finite place v of K for A, the Frobenius field of A at v is the subfield of 
algebraic numbers generated by the eigenvalues of the Frobenius at v. As an application, 
it is shown that if the set of places of a number field K at which the Frobenius fields 
of two non-CM elliptic curves defined over K are isomorphic has positive upper density, 
then the curves are isogenous over a finite extension of K.

More generally, one can try to understand the multiplicative identities satisfied by the 
eigenvalues of a pair of Galois representations, say the natural representations on the 
Tate module attached to a pair of abelian varieties. We hope that the method outlined 
out here, might shed some light on the questions raised in ([Ko]).

Coming back to the question raised above, it was claimed in ([PR]) that if the algebraic 
monodromy group of one of the representations is connected and the upper density of 
the set T of places of K at which ρ1 and ρ2 are locally potentially equivalent is positive, 
then the representations ρ1 and ρ2 are potentially equivalent. It was pointed out by J.-P. 
Serre that this claim is wrong. The proof given in ([PR]) however goes through if we 
assume that the density of T is one.

The problem was that in the course of the proof (see Remark 2.2), the following asser-
tion was made: let G be a reductive algebraic group, and let m be a number divisible by 
the exponent of the group G/G0. Then for any connected component Gφ of G, the m-th 
power map Gφ → G0 is surjective, where G0 is the connected component of identity in G.

Example 1.1. Serre gave the following counter-example: Let G be the normalizer of the 
diagonal torus in SL(2). The square map sends the non-identity component to scalar 
matrices (±Id) and is not surjective. In terms of representations, let p1 denote the trivial 
two dimensional representation and p2 the natural two dimensional representation of G. 
The characteristic polynomials of both these representations are equal evaluated at the 
fourth power of elements of the non identity connected component of G.
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Example 1.2. Based on the above example, an arithmetical counterexample can be given 
to the claim made in [PR]. Let L = Q(i) be the field of Gaussian numbers, and fix an 
embedding of L into C. Let � be a rational prime that splits completely in L, and choose 
a prime w of L dividing �. Associated to an elliptic curve E with complex multiplication 
by Z[i], there exists, by the theory of complex multiplication, a continuous character 
ψ : GL → L∗

w with the following property: at a finite place v of L with residue field 
characteristic coprime to � and unramified for E, the Frobenius element πv := ψ(σv) lies 
in Z[i], and generates a prime ideal in Z[i]. Further ψ(σv)ψτ (σv) is equal to p (resp. to 
p2), when Nv = p (resp. Nv = p2), where v divides the rational prime p of Q and τ
denotes the non-trivial element of Gal(L/Q).

Let χ : GQ → Q∗
� denote the �-adic cyclotomic character. We have for p coprime to 

�, χ(σp) = p. Consider the two representations,

ρ1 = χ⊕ χ and ρ2 = IndGQ

GK
(ψ2).

Let T be the set of rational primes p inert in L and unramified for ρ2. The characteristic 
polynomials of ρ1(σp) and ρ2(σp) for p ∈ T , are respectively of the form (X − p)2 and 
X2 + p2. Hence for i = 1, 2, ρi(σp)4 = p4I, where I is the identity matrix. Thus these 
representations are potentially equivalent at T .

The algebraic monodromy group G1 of ρ1 is isomorphic to Gm. For any natural 
number m, the characters ψm and (ψτ )m are not equal up to multiplication by a root 
of unity, by considering the values of the character at places of degree one over Q. It 
follows that the algebraic monodromy group G2 is isomorphic to the normalizer of the 
Weil restriction of scalars RL/Q(Gm) ⊂ GL2. Thus G1 is connected, the representations 
ρ1 and ρ2 are potentially equivalent at a set of places of density 12 , but are not potentially 
equivalent yielding a contradiction to Theorem 2.1 proved in [PR].

Example 1.3. Example 1.1 can be generalized. Let Z � Gk
m be a split torus of dimension 

k over a field E. The automorphism group of Gk
m can be identified with GL(k, Z). 

Let θ ∈ Aut(Z) be an automorphism of finite order, such that the θ-invariants of Z
is a finite group of order m. Form the semi-direct product Z < J >= Z � Z/nZ, 
where the generator 1 ∈ Z/nZ is denoted by J . The multiplication map is defined as, 
(xJk)(yJ l) = xJkyJ−kJk+l = xθk(y)Jk+l, where x, y ∈ Z. In particular, JxJ−1 = θ(x).

Let ρ be an absolutely irreducible representation of Z < J > of dimension greater 
than 1. The image of Z cannot be trivial, for otherwise, ρ will factor via the group Z/nZ. 
Thus ρ cannot be potentially trivial. On the other hand, it can be seen (see 2.4), that 
the elements of the coset ZJ are of order at most mn.

Example 1.4. Once there is a pair (ρ1, ρ2) of representations of GK which fails to be 
potentially equivalent, then any twist (ρ1 ⊗ η, ρ2 ⊗ η), where η is a finite dimensional 
linear representation of GK , satisfies the hypothesis of being locally potentially equivalent 
at T . Since the character of η is non-vanishing in some neighbourhood of identity, the 
twists are not potentially equivalent either.
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Further, if K ⊃ K0, and the representations ρ1 ⊗ η and ρ2 ⊗ η are respectively re-
strictions to GK of representations η1 and η2 of GK0 , then the pair of representations 
(η1, η2) will also provide a counterexample. These representations will be locally poten-
tially equivalent at the unramified set of places T0 of K0 that lie below T , but will not 
be potentially equivalent.

1.1. Theorems

Our main theorem says that the failure of ρ1 and ρ2 being potentially isomorphic 
stems from the presence of a summand generalizing the above examples, where upto a 
twist the first representation is trivial and the second representation is abelian.

Given a group Γ and a representation ρ : Γ → GL(V ), there is a finite extension E of 
F , over which there is an isotypical decomposition over E,

(ρ, V ) � ⊕t
i=1(ρi, Vi) (1.1)

where ρi are representations of Γ to GL(Vi) of the form,

ρi � ri ⊗ ρ′i. (1.2)

Here ri is an absolutely irreducible representation of Γ, and ρ′i is a trivial representation 
of Γ of dimension ni/dim(ri), where ni = dim(Vi).

Theorem 1.1. Let K be a global field and S be a set of places of K containing the 
archimedean places and of density zero. Let F be a non-archimedean local field of char-
acteristic zero, and ρ1, ρ2 : GK → GLn(F ) be semisimple continuous representations 
unramified outside S, satisfying the following hypothesis:

H1: The algebraic monodromy group G1 of ρ1 is connected.
H2: There exists a set of places T of K disjoint from S having positive upper density 

such that the representations ρ1 and ρ2 are locally potentially equivalent at T , i.e., 
for each v ∈ T , there exists a natural number mv ≥ 1 such that the ρ1(σv)mv and 
ρ2(σv)mv are conjugate in GLn(F ), where ρ1(σv) and ρ2(σv) are respectively the 
Frobenius conjugacy classes at v of ρ1 and ρ2.

Let E be a finite extension of F such that ρ1 has an isotypical decomposition as given by 
Equations (1.1) and (1.2):

ρ1 � ⊕t
i=1ρ1,i � ⊕t

i=1ri ⊗ ρ′1,i.

Then there exists a finite extension L of K, a set TL of places of L having positive density 
lying above the set of places T of K, and decomposition

ρ2 |GL
� ⊕t

i=1ρ2,i,
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where ρ2,i are semisimple representations of GL to GL(ni, E) satisfying the following:

(1) For each i = 1, · · · , t, there exists a representation ρ′2,i of GL into GLni/dim(ri)(E)
such that

ρ2,i � ri |GL
⊗ρ′2,i.

(2) The representation ρ′2,i factors as a representation GL → Z < J > (E) →
GLni/dim(ri)(E), for some group of the form Z < J > as in Example 1.3.

(3) The trivial representation ρ′1,i and ρ′2,i of GL are locally potentially equivalent at TL.
(4) If either ri or ρ′2,i is non-trivial, then the representations ri and ρ′2,i are non-

isomorphic.

Remark 1.1. In the conclusion of this theorem, a restriction to a finite extension L of K
is part of the conclusion. However, it is not possible to remove the phrase ‘potential’, 
without sacrificing the positive density of the set of places TL, as can be seen from 
Example 1.2.

Remark 1.2. The decomposition ρk,i � ri ⊗ ρ′k,i for k = 1, 2 is not necessarily a motivic 
decomposition even if ρi are motivic. Here we consider a representation to be motivic 
if it satisfies some integrality and purity conditions for the eigenvalues of the Frobenius 
classes at unramified places.

We now present a different version of the foregoing theorem in terms of character 
values evaluated at a fixed power of Frobenius classes:

Theorem 1.2. With notation as in Theorem 1.1, assume that the following hypothesis 
H2′ is satisfied instead of H2:

H2′: There exists a set of places T of K disjoint from S having positive upper density, 
and a natural number m such that for v ∈ T ,

Tr(ρ1(σv)m) = Tr(ρ2(σv)m). (1.3)

Then the conclusion of Theorem 1.2 remain valid, except that Condition (3) of the con-
clusion should be replaced by the condition,

Tr(ρ′1,i(σw)m) = Tr(ρ′2,i(σw)m), ∀w ∈ TL.

Remark 1.3. Theorem 1.2 differs from Theorem 1.1, in that apart from bounding mv

uniformly independent of v ∈ T , we are able to work with character values of the Frobe-
nius classes, rather than the m-th powers of the Frobenius classes being conjugate. We 
don’t know whether we can replace H2′ with the following condition:
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Tr(ρ1(σv)mv ) = Tr(ρ2(σv)mv ),

where mv are natural numbers depending on v.

1.2. Potential equivalence

The examples given above suggest the possibility of proving potential equivalence of 
ρ1 and ρ2 (assuming G1 is connected and upper density of T is positive), under some 
additional natural hypothesis on the nature of the representations ρ1 and ρ2.

Given a representation ρ : GK → GLn(F ) as above, consider the commutant algebra 
for any extension field E of F ,

CK(ρ,E) := {X ∈ Mn(E) | Xρ(g) = ρ(g)X ∀g ∈ GK}.

When the representation ρ arises is the Galois representation ρA attached to the Tate 
module of an abelian variety, Faltings theorem proving Tate’s conjecture asserts

CK(ρ, F ) = EndK(A) ⊗ F.

The algebra CK(ρ, F ) is also the commutant of the group Gρ(F ) in Mn(F ). Since the 
characteristic of F is zero, CK(ρ, E) = CK(ρ, F ) ⊗F E. For any finite extension L of 
K, CK(ρ, F ) ⊂ CL(ρ, F ). The commutant algebra stabilizes for L sufficiently large: by 
Zariski density, whenever the image ρ(GL) is contained inside G0

ρ(F ), where G0
ρ is the 

connected component of Gρ. We call this the stable commutant algebra and denote it 
by CK̄(ρ, F ).

As corollaries of the theorems stated above, we obtain the following theorem providing 
instances when (global) potential equivalence can be deduced:

Theorem 1.3. With hypothesis as in Theorem 1.2 (or Theorem 1.1), assume further that 
either of the following conditions hold:

(1) ρ1 is absolutely irreducible.
(2) The algebraic monodromy group G2 of ρ2 is connected.
(3) The algebraic ranks of G1 and G0

2 are equal, where G0
2 is the connected component 

of identity of G2.
(4) For any finite extension L of K,

CK(ρ, F ) = CL(ρ, F ) = CK̄(ρ, F ).

Then ρ1 and ρ2 are potentially equivalent. Further, when ρ1 is absolutely irreducible, 
there exists a character χ : GK → F̄ ∗, such that ρ2 � ρ1 ⊗ χ.
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The last conclusion is deduced by an argument using Schur’s lemma ([Ra]). One cannot 
expect that the character χ has values in F ∗ in general, as a pair of representations ρ
and ρ ⊗ χ, with ρ absolutely irreducible and χ an arbitrary character with values in F̄ ∗

satisfy the hypothesis of the corollary.

Remark 1.4. In general, one can possibly expect the following principle to be valid: 
suppose a property P of the conjugacy classes of GLn ×GLn is given, such that a pair 
of �-adic representations of GK become potentially equivalent whenever the Frobenius 
classes satisfy property P at a set of places of density one. Then the expectation, barring 
few exceptions, is that potential equivalence will hold under the weaker assumption that 
the Frobenius classes satisfy property P at a set of places of positive density, provided 
one of the algebraic monodromy groups is connected. It is to be hoped that the algebraic 
method outlined out here can be applied to answer such questions.

1.3. Applications

The above corollary can be applied to the Galois representations attached to modular 
forms, and we deduce,

Corollary 1.1. Let f and g be two newforms of level N1 and N2, and respectively of 
weights k1 and k2. Suppose that at a set T of primes p coprime to N1N2 of positive 
upper density, and natural numbers np, p ∈ T ,

Tr(Tnp
p (f)) = Tr(Tnp

p (g)),

where Tp is the Hecke operator at p. Assume further that one of the forms is not CM. 
Then the weights of the two forms are equal and there exists a Dirichlet character χ such 
that for p � |N1N2,

ap(f) = χ(p)ap(g),

where for a newform h, ap(h) := Tr(Tp(h)) is the p-th Hecke eigenvalue of h.

Indeed the corollary follows from either Part (i), (ii) or (ii) of Theorem 1.3, from well 
known properties of the Galois representation attached to a non-CM newforms.

One of the motivating problems for the questions considered here, is the following 
application to abelian varieties, which can be deduced from Part (iv) Theorem 1.3, and 
the theorem of Tate, Zarhin and Faltings proving Tate conjecture on isogenies of abelian 
varieties:

Corollary 1.2. Let A, B be Abelian varieties of dimension g defined over a number field 
K without complex multiplication (over K̄). Suppose that T is a set of finite places of 
positive upper density of K consisting of places of good reduction for A and B, such that 
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for every v ∈ T , the reduction Av, Bv modulo v of the Abelian varieties A, B at v, are 
isogenous over a finite extension of the residue field kv of K at v.

Assume further that the algebraic monodromy group attached to the Galois represen-
tation on the �-adic Tate module of A is connected, and EndK(B) = EndK̄(B), i.e., all 
the endomorphisms of B are defined over K.

Then A and B are isogenous over a finite extension L of K.

Remark 1.5. It would be interesting to know whether the statement will hold for abelian 
varieties in general.

1.4. Outline of the proof

Without any hypothesis on the algebraic monodromy groups, potential equivalence 
can be deduced by assuming that the density of T is one ([PR]). The main thrust 
of this paper, is to deduce a similar conclusion, assuming only that density of T is 
positive. The proof of the Theorems 1.1 and 1.2 follow along the lines of ([Se]) and ([Ra]), 
by considering the algebraic monodromy groups of the representations involved and 
converting the problem to one on algebraic groups by means of an algebraic Chebotarev 
density theorem (see Theorem 2.1). The algebraic Chebotarev density theorem assures 
the existence of a connected component of the monodromy group of ρ1 × ρ2 where the 
representations are potentially equivalent.

If we assume further that one of the monodromy groups is connected, the algebraic 
formulation allows us to base change to complex numbers and to employ a version of the 
unitary trick similar to the one used in [Ra]. The crucial and new observation out here is 
to interpret the consequence of the unitary trick and convert the problem to one involving 
the first representation and twist of the second representation by an automorphism of 
finite order (see Equations (2.1), (2.2), (2.3)). An appeal to a classical theorem on fixed 
points of finite order automorphisms of semisimple groups (Theorem 2.4) allows us to get 
at the algebraic structure of the representations satisfying the hypothesis of Theorem 1.2.

The method of proof allows us to conclude (see Theorem 2.5) that the images of 
connected components of semisimple algebraic groups with respect to the power maps 
Pm will not collapse. This is unlike the situation given by Examples 1.1 and 1.3, where 
collapsing happens when the connected component is a torus.

2. Algebraic formulation of Theorem 1.2

2.1. A uniform bound for the exponents in Theorem 1.1

We first show that the exponents mv, v ∈ T appearing in Theorem 1.1 can be uni-
formly bounded, using the fact that there are only finitely many roots of unity in any 
non-archimedean local field:
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Lemma 2.1. Let σ1 and σ2 be two semisimple elements in GLn(F ) where F is local field 
(finite extension of Q�). Suppose there exists a non-zero integer k such that σk

1 and σk
1

are conjugate in GLn(F ). Then, there exists a positive integer m depending only on n
and F such that σm

1 and σm
2 are conjugate in GLn(F ).

Remark 2.1. Since we are working in GLn, two elements are conjugate in GLn(F ) if and 
only if they are conjugate in GLn(F̄ ).

Proof. Choose an algebraic closure F̄ of F . Let F ′ be the extension of F in F̄ generated 
by the eigenvalues of σ1 and σ2 in F̄ . It is easy to see that

[F ′ : F ] ≤ (n!)2.

The number of roots of unity contained in such a field F ′ is bounded above by some 
positive integer m0 depending only on [F ′ : Q�], thus depending only on n and [F : Q�].

Let {α1, · · · , αn} (respectively {β1, · · · , βn}) be the eigenvalues of σ1 (respectively 
σ2). Since by our hypothesis σk

1 is conjugate of σk
2 we have up to a permutation,

αk
i = βk

i , ∀ 1 ≤ i ≤ n.

Hence αi and βi differ by a root of unity, which lies in F ′. Thus from the above comment, 
for m = m0! we have:

αm
i = βm

i , ∀ 1 ≤ i ≤ n.

But since both σ1 and σ2 are semisimple elements in GLn(F̄ ), σm
1 and σm

2 are conjugate 
in GLn(F ). �

It follows from this lemma, upon assuming the hypothesis of Theorem 1.1, there exists 
a positive integer m independent of v ∈ T , and such that for all v ∈ T , ρ1(σv)m and 
ρ2(σv)m are conjugate in GLn(F ).

2.2. An application of an algebraic Chebotarev density theorem

We recall Theorem 3 of [Ra], an algebraic interpretation of results proved in Section 
6 (especially Proposition 15) of [Se], giving an algebraic formulation of the Chebotarev 
density theorem for the density of places satisfying an algebraic conjugacy condition:

Theorem 2.1. [Ra, Theorem 3] Let M be an algebraic group defined over a l-adic local 
field F of characteristic zero. Suppose

ρ : GK → M(F )

is a continuous representation unramified outside a finite set of places of K.
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Suppose X is a closed subscheme of M defined over F and stable under the adjoint 
action of M on itself. Let

C := X(F ) ∩ ρ(GK).

Let Σu denote the set of finite places of K at which ρ is unramified. Then the set

S := {v ∈ Σu | ρ(σv) ⊂ C},

has a density given by

d(S) = |Ψ|
|Φ| ,

where Φ is the set of connected components of G, and Ψ is the set of those φ ∈ Φ such 
that the corresponding connected component Gφ of G is contained in X.

Corollary 2.1. Let ρ be a semisimple continuous �-adic representation of GK to GLn(F )
unramified outside a finite set of places of K. Then there is a density one set of places of 
K at which ρ is unramified and the corresponding Frobenius conjugacy class is semisim-
ple.

Proof. Since the representations are assumed to be semi-simple, the algebraic mon-
odromy groups are reductive algebraic group defined over F . The corollary follows from 
the fact that the semisimple elements in a reductive group G contain a Zariski dense 
open subset of G. �

Let m be a natural number. Consider the following Zariski closed, invariant subsets 
of GLn ×GLn:

Xm := {(g1, g2) ∈ GLn ×GLn | Trace(gm1 ) = Trace(gm2 )}
Ym := {(g1, g2) ∈ GLn ×GLn | Trace(Λj(gm1 )) = Trace(Λj(gm2 )), j = 1, · · · , n},

where Λj denotes the j-th exterior power representation of GLn. For semisimple elements, 
the condition that (g1, g2) ∈ Ym, is equivalent to saying that gm1 and gm2 are conjugate.

Given the hypothesis of Theorem 1.2 (resp. Theorem 1.1), we have

ρ(σv) ∈ Xm(F ) (resp. ρ(σv) ∈ Ym(F )) ∀v ∈ T ′,

where ρ = ρ1⊕ρ2 : GK → GLn(F ) ×GLn(F ) is the direct sum of the representations ρ1
and ρ2. In what follows we present the proof for Theorem 1.2, and make remarks only 
as required for the proof of Theorem 1.1.
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Let G denote the algebraic monodromy group of ρ. Since T is of positive upper 
density, by Theorem 2.1 above, there exists a connected component Gφ of G such that 
Gφ is contained in Xm.

We are led to consider the following problem in the context of algebraic groups: let G ⊂
GLn×GLn be a reductive algebraic group and p1, p2 denote the two projections. Assume 
that the image p1(G) = G1 is connected. Suppose that there is a connected component 
Gφ of G contained inside Xm. What can we conclude about the representations p1 and 
p2 of G? For the rest of this section, we will be following this notation.

We first observe the equivalence of the representations when G is connected:

Proposition 2.2. With the above notation, suppose G is connected and G ⊂ Xm. Then 
the representations p1 and p2 are equivalent.

Proof. Since G is connected, the m-th power map x �→ xm from G to G is dominant. 
Hence G ⊂ X1, and the representations p1 and p2 are equivalent. �
Remark 2.2. The surjectivity of the m-th power map fails when we consider it between 
connected components. In [PR] the argument continued as follows: it can be assumed that 
m is chosen such that the m-th power map sends Gφ to G0, the connected component of 
identity in G. The image will be contained inside the subvariety X1. Upon the erroneous
assumption that the m-th power map is surjective, one concludes that G0 ⊂ X1 and this 
implies potential equivalence of ρ1 and ρ2. But this assumption is wrong, as was pointed 
out by J.-P. Serre.

2.3. A unitary trick

One of the advantages with the algebraic formulation is that it allows base change 
to the field of complex numbers, which makes it amenable to transcendental methods. 
Choosing an isomorphism of the algebraic closure of F with C, we consider the analogous 
problem over complex numbers.

Let U be a maximal compact subgroup of G(C) which we will assume is contained 
inside U(n) × U(n), where U(n) ⊂ GLn(C) is the (standard) group of unitary n × n

matrices. The group U is Zariski dense in G. Hence the intersection Uφ := U ∩ Gφ is 
Zariski dense in Gφ. In particular, it is non-empty.

The image p1(U) of the projection of U to the first factor is a maximal compact 
subgroup of G1(C). Since by hypothesis G1 is connected, p1(U) is connected and equal 
to p1(U0), where U0 := U∩G0 is the connected component of U . Hence for any connected 
component Uψ of U , p1(Uψ) = p1(U0). In particular, the image p1(Uφ) is a subgroup of 
G1(C).

Hence there exists an element of the form (In, j) ∈ Uφ, where In denotes the identity 
matrix in GLn(C). Since Gφ ⊂ Xm,

n = Tr(Imn ) = Tr(jm).
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Since the only unitary matrix in with trace equal to n is the identity matrix, we conclude 
that jm = In. Thus, Gφ = G0(In, j) with jm = In. Let J = (In, j). The condition 
Gφ ⊂ Xm, translates to the condition (xJ)m ∈ Xm for any x ∈ G0.

Remark 2.3. In [Ra], we considered the case m = 1. In this case, we have that (In, In) ∈
Gφ(C), and this implies that Gφ = G0, and the representations p1 and p2 are isomorphic 
restricted to G0. Hence we conclude that ρ1 and ρ2 are potentially isomorphic.

For m ≥ 2, the significance of the unitary trick lies in the following crucial observation:

(xJ)m = xJ · · ·xJ = xJxJ−1J2xJ−2 · · ·Jm−1xJ−(m−1)Jm−1J, x ∈ G0. (2.1)

Let θ(x) = JxJ−1 denote the automorphism of finite order (dividing m) of G0 induced 
by the conjugation action of J . Since by the unitary trick Jm = (In, In), the above 
equation becomes,

(xJ)m = xθ(x)θ2(x) · · · θm−1(x), x ∈ G0. (2.2)

The condition Gφ ⊂ Xm now translates to the following the first representation is abso-
lutely irreducible condition on the representations p1 and p2 of G0:

Tr(p1(x)m) = Tr
(
p2(xθ(x)θ2(x) · · · θm−1(x))

)
, x ∈ G0. (2.3)

2.4. Example 1.3

The above calculation can be reversed. We put ourselves in the context of Example 1.3. 
For x ∈ Z,

(xJ)n = xθ(x) · · · θn−1(x),

is θ invariant as Z is abelian. Since, by assumption the subgroup of θ-invariants of Z is 
finite (of order m), the element xJ is of finite order. Hence for any representation ρ of 
Z < J >, the elements of the coset xJ have order at most mn, where m is the order of 
the subgroup of θ-invariants of Z.

Remark 2.4. We make a remark, which we will use in deducing Part (iv) of Theorem 1.3. 
If ρ(Z) and ρ(J) commute, the fact that xJ is of finite order implies that ρ(x) is of 
finite order for x ∈ Z. Since Z is connected, its image is trivial and this contradicts the 
irreducibility of ρ. In particular, ρ(Z) and ρ(J) do not commute, i.e., there exist elements
of ρ(Z) which are not fixed by the conjugacy action of ρ(J).
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2.5. Algebraic analogue of Theorem 1.2

In this section, we consider the subgroup of G ⊂ GL(n) × GL(n) generated by G0

and the connected component Gφ, as considered above. By an abuse of notation, we 
continue to denote this subgroup by G. Since J has finite order, it is semisimple with 
eigenvalues roots of unity. Hence J and the automorphism θ are defined over a finite 
extension F ′ of F . The group G is defined over F , and over F ′, is isomorphic to the 
group generated by G0 and the element J = (1, j) ∈ G(F ′). The conjugation action by 
the element (1, j) induces the automorphism θ on G0 defined over F ′. We decompose G
(the decompositions are valid over any finite extension of F containing F ′) with respect 
to the action of θ as follows:

(1) The derived subgroup G′ of G0 is a connected semisimple group defined over F .
(2) The connected component Z of the center of G0 is invariant under θ.

The automorphism θ leaves stable the groups G′ and Z (considered as subgroups 
over F ′), and there is a decomposition

G0 = G′Z and G′ ∩ Z is finite.

We further decompose Z with respect to the action of θ.
Consider the lattice X∗(Z) of characters of Z. Define endomorphisms of X∗(Z),

Iθ = 1 − θ and Nθ = 1 + θ + · · · + θm−1.

Let Xθ be the subgroup of X∗(Z) on which θ acts trivially and Zθ be the corre-
sponding subtorus of Z defined over F ′. This is the maximial subtorus of Z on which 
θ acts trivially.

(3) Decompose the space X∗(Z) ⊗Q = Xθ⊗Q ⊕Y , where Y is the kernel of Nθ. Choose 
a lattice L0 ⊂ Y and let Lθ =

∑m−1
i=0 θi(L0). The lattice Lθ is θ-invariant and is the 

character group of a θ-stable subtorus Zθ of Z. The invariants of θ acting on Zθ and 
G′Zθ ∩ Zθ are finite groups.

(4) Let Zθ <J> be the subgroup of G generated by Zθ and the element J . The groups 
G′Zθ and Zθ <J> are normal in G, and there is a decomposition

G = G′Zθ(Zθ <J>) and G′Zθ ∩ Zθ <J> is finite.

We have the following algebraic analogue of Theorem 1.2:

Theorem 2.3. Let G be as above. Suppose that the following condition is satisfied for 
x ∈ G0:

Tr(p1(xm)) = Tr(p2(xθ(x) · · · θm−1(x))). (2.4)
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With respect to the decomposition G = G′ZθZθ <J> given above, the following hold:

(1) θ acts trivially on G′Zθ, and

p1 |G′Zθ� p2 |G′Zθ

(2) p1 restricted to Zθ <J> is trivial.
(3) Let E be a finite extension of F ′, over which the representation p1 of G has an 

isotypical decomposition as given by Equations (1.1) and (1.2):

p1 � ⊕t
i=1p1,i � ⊕t

i=1Ri ⊗ p′1,i,

where the representations p′1,i are trivial of appropriate degree. The representation 
p2 decomposes over E as

p2 � ⊕t
i=1p2,i,

where p2,i are representations of G to GLVi
. For 1 ≤ i ≤ t, there exist representations

p′2,i of Zθ <J> into GLni/dim(Ri)(E), satisfying:
(a) As representations of the group G′Zθ × Zθ <J>,

p2,i = Ri ⊗ p′2,i,

where Ri is considered as a representation of G′Zθ.
(b) The representations p′1,i, p′2,i satisfy,

ni = Tr(p′1,i(xm)) = Tr(p′2,i(xθ(x) · · · θm−1(x))), x ∈ Zθ. (2.5)

Equivalently, for y = xJ belonging to the coset ZθJ ,

ni = Tr(p′1,i(ym)) = Tr(p′2,i(ym)).

Remark 2.5. A similar analogous statement can be made for Theorem 1.1, where the 
hypothesis is modified by considering the analogue of Equation (2.4) for all exterior 
powers. Similarly the conclusion can be strengthened to say that the equality of Equation 
(2.5) holds for all exterior powers. Since Zθ is a torus, the elements in the image of 
Zθ <J> will be semisimple for any linear representation of Zθ <J>. From this and the 
equality of traces for all exterior powers, one concludes that the elements p′1,i(ym) and 
p′2,i(ym) are conjugate for y = xJ ∈ ZθJ, x ∈ Zθ.
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2.6. Proof of Parts (1) and (2) of Theorem 2.3

Let H denote the connected component of identity of Ker(p1 |G′). The group H is 
semisimple, and since p1 = p1 ◦ θ, H is θ-stable. Let Hθ denote the identity connected 
component of the fixed points of θ acting on H.

Restricted to Hθ, Equation (2.4) gives the identity:

n = Tr(p1(xm)) = Tr(p2(xm)), x ∈ Hθ,

where we have used the fact that p1 restricted to H is trivial. By Proposition 2.2, the 
representation p2 restricted to Hθ is trivial. Since G′ ⊂ GLn ×GLn, the representation 
p2 restricted to H, and in particular to Hθ is injective. Hence Hθ is trivial.

The following theorem is classical (see for instance [K, Chapter 8]) or [BM]), and we 
give a proof in our context in the following section):

Theorem 2.4. Let H be a (non-trivial) connected semisimple group over F , and let θ be 
a finite order automorphism of H. Then the connected component Hθ of the fixed points 
of θ is a non-trivial reductive group.

From this theorem and the triviality of Hθ, it follows that H is trivial, i.e., the kernel 
of p1 |G′ is finite. From the equality p1 ◦θ = p1, we get for g ∈ G′ that θ(g) = zg for some 
z in kernel of p1, i.e., θ(g)g−1 = z. The finiteness of the kernel and the connectedness of 
G′ implies that θ acts trivially on G′.

Thus θ acts trivially on G′Zθ. Proposition 2.2 applied to Equation (2.4) restricted to 
G′Zθ yields Part (1) of Theorem 2.3.

The proof of Part (2) of Theorem 2.3, follows from the fact that θ acts trivially on 
the first co-ordinate. Since Zθ has finite θ-invariants, being connected, it cannot have a 
non-trivial quotient with trivial action of θ. The element J projects trivially to the first 
component by our choice of J .

2.7. Part (3) of Theorem 2.3

By Part (1), after a change of basis of one of the representations we can assume that

p1 |G′Zθ= p2 |G′Zθ

Let En = ⊕t
i=1Vi be the decomposition into isotypical components of absolutely ir-

reducible representations of the representation p1 |G′Zθ . These components are stabi-
lized by G as G′Zθ is normal in G. Hence, considered as representations of the group 
G′Zθ × Zθ <J>, the representation p2,i can be written as,

p2,i � ⊕nj

j=1Ri ⊗ ηij ,
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for some collection of absolutely irreducible representations ηij of Zθ <J>. Define

p′2,i = ⊕nj

j=1ηij .

This gives the decomposition in Part (3.a).
To prove Part (3.b), in terms of the decompositions, Equation (2.4) can be written 

as,

t∑

i=1
Tr(Ri(gm))Tr(p′1,i(xm)) =

t∑

i=1
Tr(Ri(gm))Tr(p′2,i(xθ(x) · · · θm−1(x))),

for g ∈ G′Zθ and x ∈ Zθ. Since G′Zθ is connected, the map g �→ gm is surjective. The 
representations Ri are distinct irreducible representations of G′Zθ. Hence by the linear 
independence of characters, we obtain Part (3.c) of Theorem 2.3.

2.8. Proof of Theorem 2.4

For the sake of completeness of exposition, we give a proof of Theorem 2.4 in the 
following context which is sufficient for our purpose (see [K, Chapter 8] for a more detailed 
and complete exposition): we take F = C, G ⊂ GL(n, C) and the automorphism θ is 
induced by conjugation by an unitary matrix. In this case, θ commutes with the Cartan 
involution θc : A �→t Ā−1. Hence the Cartain involution fixes Hθ, and it follows that Hθ

is a reductive group.
To see that the connected component Hθ of the fixed points of θ is non-trivial, it 

suffices to work with a compact form of H. Let H denote the complexification of the 
Lie algebra of the compact form. We continue to denote by θ the inducted action on 
the Lie algebra. Decompose H = ⊕m−1

i=0 Hi as eigenspaces for the action of θ on H, where 
Hj = {X ∈ H | θ(X) = ζjmX}. Here ζm is a fixed choice of a primitive m-th root of 
unity.

Let I be the set of indices for which Hi is non-zero, and let k ∈ I be such that ζkm is 
a generator for the subgroup of the roots of unity generated by ζjm, j ∈ I. For X ∈ Hk

and Y ∈ Hl,

θ(ad(X)(Y )) = θ([X,Y ]) = [θ(X), θ(Y )] = ζk+l
m [X,Y ].

Suppose 0 is not in I. For any n, ad(X)n(Y ) belongs to ζnk+l
m -eigenspace of θ. The 

assumption on k implies that for some n, ad(X)n will annihilate the space Hl. Choosing 
n appropriately, this implies that ad(X) is nilpotent on H. But then there are no such 
elements in H. Hence 0 ∈ I and this implies that Hθ is non-trivial.

2.9. Images of connected components with respect to power maps

Examples 1.1 and 1.3 give instances when the power map Pm : x �→ xm from a 
connected component Gφ of G to the connected component of identity has image a sin-
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gleton set. Such instances occur when the connected component is a tori. The observation 
given by Equation (2.1) allows us to conclude that the images of connected components 
of semisimple algebraic groups with respect to the power maps Pm will not collapse.

Theorem 2.5. Let G be a semisimple algebraic group over an algebraically closed field 
F of characteristic zero. Let Gφ denote a connected component of G. Suppose that the 
order of Gφ is n. For a sufficiently large multiple m of n, the image of Gφ by the power 
map Pm : x �→ xm contains a (Zariski open) neighbourhood of identity of a non-trivial 
connected reductive group.

Proof. We show that there exists a torsion element j in Gφ of order m. Elements x of 
Gφ induce automorphisms θx of G0 by conjugation, and two such automorphisms are 
related by an inner automorphism. By [Sp, Corollary 2.14] the sequence

1 → Inn(G0) → Aut(G0) → Out(G0) → 1,

splits. Since Out(G0) is finite, modifying x by an element in G0, we get an element 
j ∈ Gφ, such that the corresponding inner automorphism it defines on G0 is trivial. 
Hence j belongs to the center of G0. Since the center of G0 is finite, this yields an 
element j ∈ Gφ of finite order.

Let θj(x) = jxj−1 be the automorphism induced on G0 by conjugation by j. From 
Equation (2.2), the image of Pm will contain elements of the form xθ(x)θ2(x) · · · θm−1(x), 
where x ranges over the elements of G0. In particular, the image will contain elements 
of the form xm for x ∈ (G0)θ, where (G0)θ denotes the connected component of identity 
of the fixed points of θ acting on G0. By Theorem 2.4, this is a non-trivial connected 
reductive group. The image of the map x �→ xm from (G0)θ to itself is dominant and 
contains a neighbourhood of identity of (G0)θ, and this proves the theorem. �
3. Proof of Theorem 1.2

3.1. Algebraic envelopes

We first make some few remarks on the relationship between representations of ab-
stract groups and their algebraic envelopes:

(1) Suppose Γ ⊂ G(F̄ ) is a Zariski dense subgroup and ρ a representation of G. Then the 
isotypical decompositions ρ |Γ is the restriction to Γ of the isotypical decomposition 
of ρ. This follows from the fact that a representation R of G is irreducible if and 
only if it is irreducible restricted to Γ.

(2) Suppose ρ : Γ → GLn(F̄ ) is a representation with connected algebraic monodromy 
group G. If r : G → H is a representation of algebraic groups, then the algebraic 
envelope of r ◦ ρ is the image group r(G), and hence is also a connected group. In 
particular if ρ � ⊕t

i=1ρi, then the algebraic envelopes of ρi are connected.
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(3) Suppose ρ1, ρ2 are two linear representations of Γ. The tensor product representation 
‘factors’ via the direct sum: γ �→ (ρ1(γ), ρ2(γ)) �→ ρ1(γ) ⊗ ρ2(γ). Further ρ1(γ) ⊗
ρ2(γ) is trivial if and only if both ρ1(γ) and ρ2(γ) are trivial. Hence the algebraic 
monodromy group of ρ1 ⊗ ρ2 and ρ1 ⊕ ρ2 are isomorphic.

3.2. Proof of Theorem 1.2

We deduce now Theorem 1.2 from Theorem 2.3. From the arguments of Sections 2.2
and 2.3, consider the group G̃ generated by G0 and the connected component Gφ (as is 
done in Section 2.5). The group ρ−1(G̃(F )) is of finite index in GK and is of the form 
GK1 for some finite extension K1 of K. We apply Theorem 2.3 to G̃ and let E be the 
field given in Part (3) of Theorem 2.3.

The natural map π from the product of groups

π : G̃′Zθ(E) × Zθ <J> (E) → G̃(E),

has finite kernel A. Choose a θ-stable open subgroup M ′ (resp. Mθ) of G̃′Zθ(E) (resp. 
Zθ <J> (E)), such that M ′×Mθ intersects A only at the identity element. Let Mθ <J>

denote the open subgroup of Zθ <J> (E) generated by Mθ and J . This group is Zariski 
dense in Zθ <J>.

The group M ′ ×Mθ <J> maps isomorphically via π to its image group denoted by 
M in G̃(E). This is an open subgroup of G̃(E). The intersection ρ(GK1) ∩M is of finite 
index in ρ(GK1), and is of the form ρ(GL) for some finite extension L of K. Thus we can 
consider the map ρ : GL → G̃(E) to factor via G̃′Zθ(E) × Zθ <J> (E). Composing the 
maps Ri, p′1,i and p′2,i with the map ρ defines respectively linear representations ri, ρ′1,i
and ρ′2,i of GL.

By the above remark, the isotypical decomposition of the representation ρ1 restricted 
to GL is the restriction of the isotypical decomposition of ρ1. Since the representations 
Ri and p′2,i factor via different groups, provided one of them is non-trivial, they are not 
isomorphic.

We need to only check the positive density upon restriction to L. From the construc-
tion, the algebraic monodromy of the collection of representations ρ′2,i is Zθ <J>. The 
set of places TL is defined to be those places of L such that the image of the Frobenius 
conjugacy class by the representations ρ′2,i lands inside the component ZθJ of Zθ <J>, 
and hence it is of positive density by Chebotarev density theorem. Theorem 1.2 follows 
now from Theorem 2.3.

4. Proof of Theorem 1.3

We now prove Theorem 1.3.
(1) If ρ1 is absolutely irreducible, then t = 1 and the dimension of the representations 

ρ′1,1 and ρ′2,1 is one. Since they are also potentially equivalent, the values of ρ′2,1 lie 
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in roots of unity of F , which is a finite set. Hence the representations are potentially 
equivalent.

(2) Suppose that the algebraic monodromy group of ρ2 is also connected. By Re-
mark 3.1, the algebraic monodromy groups of the components ρ2,i � ri ⊗ ρ′2,i are also 
connected for each i. Further the algebraic monodromy group of the tensor product 
ri ⊗ ρ′2,i and ri ⊕ ρ′2,i are isomorphic. This implies that the algebraic monodromy group 
of ρ′2,i are also connected.

Thus we are in the situation of the hypothesis of Theorem 1.2, where the first rep-
resentation ρ′1,i is trivial and the second representation ρ′2,i has connected algebraic 
monodromy group. In this case, the algebraic monodromy group of ρ′1,i ⊕ ρ′2,i is isomor-
phic to that of ρ′2,i, and hence is connected. By Proposition 2.2, Part (2) of Theorem 1.3
follows.

(3) The projection map takes a maximal torus in the algebraic monodromy group of 
ρ2 to a maximal torus of the algebraic monodromy group of ri ⊗ ρ′2,i for each i. The 
latter monodromy group is isomorphic to the monodromy of ri ⊕ ρ′2,i. If the ranks of 
the monodromy groups of ρ1 and ρ2 are equal, then for each i, the representations ρ′2,i
are finite. This means that the representations ρ′2,i are potentially trivial and hence the 
representations ρ1 and ρ2 are potentially equivalent.

(4) The representations ρ′2,i factors via the group Zθ < J > (E). By Remark 2.4, if 
ρ′2,i has an irreducible component of dimension at least two for some i, then there exists 
an element, say u ∈ Zθ(E), such that ρ′2,i(u) is not invariant by the conjugacy action 
induced by J . Since Z is abelian, this means that the stable commutant algebra of ρ′2,i
is strictly larger than the commutant algebra of ρ′2,i. This implies that CK(ρ2, F ) �=
CK̄(ρ2, F ).

Hence if the commutant algebra CK(ρ2, F ) is isomorphic to the stable commutant 
algebra CK̄(ρ2, F ), the representations ρ′2,i breaks up as a direct sum of one dimen-
sional representations over Ē. In particular p′2,i(Zθ) and p′2,i(J) commute, where p′2,i
is the representation of θ < J > through which ρ′2,i factors. But as remarked in Sec-
tion 2.4, this implies that the representations p′2,i is finite, and hence ρ′2,i is potentially 
finite.

This proves Theorem 1.3.
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